COURSE OVERVIEW
Vancouver is a beautiful and sustainable city in a dramatic natural setting. What role do the natural areas in and around the city play in sustaining a metropolitan area such as Vancouver? How has this system been intentionally planned? This course will introduce how park and conservation areas in the region clean air and water, sustain wildlife, and provide psychological and other health benefits to people. Students will learn how the parks, greenways and natural areas in the Greater Vancouver region are planned to sustain this dynamic and growing region.

Learning Objectives
• Understand how biogeography, jurisdictional authority and planning context influence the layout and design of green spaces in Metro Vancouver
• Understand the core concepts of green system and park planning
• Develop an experience-based understanding of representative greenspaces in Metro Vancouver
• Understand basic terminology and concepts of ecosystem services
• Understand how to conduct analysis of urban park spaces from an ecosystem services perspective

TOPICS + SUBTOPICS
1. Introduction to the Green Spaces of Vancouver (Day 1)
 • Lecture (Jeff Fitzpatrick) - Regional Context – flood plain, coast, river, mountains
 • Lecture (Jeff Fitzpatrick) - Parks of the Region – role, mandate, characteristics, connections
 • FIELD TRIP: Pacific Spirit Regional Park, Jericho Beach Park

Required Reading:
Erickson, Donna. Metrogreen. Island Press, Washington, DC, USA, 2006 (Chapter 1)

Reference Reading:

Reference Material:
Pacific Spirit Regional Park

2. Ecosystem Services (Day 2 & 3)
Day 2
• Guest Lecture (Patrick Mooney - UBC) - Theory and Overview of Ecosystem Services
• FIELD TRIP: Capilano River Regional Park Guided Hike (Metro Vancouver Staff)
• Assignment One – ‘Analyzing For Ecosystem Services’ Part 1
Day 3
• Assignment One – ‘Analyzing For Ecosystem Services’ Part 2
• Lecture (Cynthia Girling) – Green Networks and Neighborhood Design
• FIELD TRIP: Richmond Terra Nova Park, West Dyke Trail

Required Reading:
Mooney, Patrick and Brown, Glenn. Ecosystem Services, Natural Capital and Natures Benefits in the Urban Region. Vancouver, 2013
De Groot et al, Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Wageningen University, 2009
Girling, Cynthia. Skinny Streets and Green Neighborhoods: Design for Environment and Community. Island Press, 2005 (Chapter 1, 3 and Chapter 5)

Reference Material:
Capilano River Regional Park Map
Capilano River Regional Park Overview Video
City of Richmond Terra Nova Park

3. Green Systems - Park & Greenway Planning (Day 4 - 6)
Day 4
- Lecture (Jeff Fitzpatrick) – Principles of Park Planning
- FIELD TRIP: Stanley Park Seawall Bike Trip
Day 5
- Assignment Two – Iona Beach Regional Park: Systems, Planning, Vision
- Guest Speaker B (Space2Place, Jeff Cutler)
- FIELD TRIP: Iona Beach Regional Park
Day 6
- Assignment Two presentation
- FIELD TRIP: New Westminster Pier Park, Fraser River Boat Tour
- Course wrap up

Reference Reading:
Molnar, Donald J. Anatomy of a Park (Chapter 1 & 9). Purdue University, 2008
Hellmund, Paul and Smith, Daniel. Designing Greenways (Chapter 1). Washington, 2006

Reference Material:
Metro Vancouver Sensitive Ecosystem Map App
Connecting the Dots: Regional Green Infrastructure Network Resource Guide,
Experience the Fraser Concept Plan
Experience the Fraser video

TEACHING METHODOLOGIES
Each of the three modules of this course will include lectures from the faculty instructor and invited experts, walking/cycling study tours of significant parks, greenspaces and natural features in Metro Vancouver and in-class discussion sessions.

Students will maintain a course journal and complete two assignments. The first will be an ecosystem services analysis of Capilano River Regional Park. The second assignment will be a more detailed case study of Iona Beach Regional Park, applying course content to analyze the park and develop a high level concept plan.

TIMING PER TOPIC
Topic 1: 6 hours / 1 day
Topic 2: 12 hours / 2 days
Topic 3: 18 hours / 3 days
Evaluation
15% Class participation
15% Journal completion
30% Assignment 1
40% Assignment 2